\mathscr{L} ogarithmic \mathscr{L} attices

Léo Ducas

Centrum Wiskunde \& Informatica, Amsterdam, The Netherlands

CWI

Workshop: Computational Challenges in the Theory of Lattices ICERM, Brown University, Providence, RI, USA, April 23-27, 2018

2 Settings

Continuous setting:

$\Lambda \subset \mathbb{C}^{n}:$ a lattice,
\odot : component-wise product on \mathbb{C}^{n}.

$$
\begin{aligned}
\operatorname{Exp}_{\Lambda} & : \vec{v} \in \mathbb{C}^{n} \mapsto\left(\exp \left(v_{1}\right), \ldots, \exp \left(v_{n}\right)\right) \odot \Lambda \\
\mathscr{L} & =\left\{v \in \mathbb{C}^{n} \text { s.t. } \operatorname{Exp}_{\Lambda}(v)=\Lambda\right\} .
\end{aligned}
$$

Discrete setting:

$\mathfrak{B}=\left\{\mathfrak{p}_{1}, \ldots \mathfrak{p}_{n}\right\} \subset K^{\times}$: a set of primes of a field K.
$[\cdot]: K^{\times} \rightarrow G$, a multiplicative morphism to a finite abelian group G.

$$
\begin{aligned}
\operatorname{Exp}_{\mathfrak{B}} & : \vec{v} \in \mathbb{Z}^{n} \mapsto\left[\prod \mathfrak{p}_{i}^{v_{i}}\right] \\
\mathscr{L} & =\left\{v \in \mathbb{Z}^{n} \text { s.t. } \operatorname{Exp}_{\mathfrak{B}}(v)=I d_{G}\right\} .
\end{aligned}
$$

Logarithm Problem

Logarithms are only defined $\bmod \mathscr{L}$:

$$
\begin{aligned}
& \operatorname{Exp}_{\mathfrak{B}}(x)=\operatorname{Exp}_{\mathfrak{B}}(y) \Leftrightarrow x \in y+\mathscr{L} \\
& \log _{\mathfrak{B}}(g):=\operatorname{Exp}_{\mathfrak{B}}^{-1}(g)=x+\mathscr{L} \text { s.t. } \operatorname{Exp}_{\mathfrak{B}}(x)=g
\end{aligned}
$$

Hidden Subgroup Problem

Find the lattice \mathscr{L} (a set of generators of \mathscr{L}).
(typically: find one non-zero vector \Rightarrow find the whole lattice)
Classically: Index Calculus Methods, Quantumly: [Eisentrger Hallgren Kitaev Song 14]

Discrete Logarithm Problem $\bmod p$

$R=\mathbb{Z}, g, h \in(\mathbb{Z} / p \mathbb{Z})^{\times},[\cdot]: x \mapsto x \bmod p, \mathscr{L}=(p-1) \mathbb{Z}$ is known.
DLP: Find a representative $x \in \log (g)$

Short Logarithm Problems ?

... non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

> Fair question, but why would that matter ?

Short Logarithm Problems ?

> ... non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

> Fair question, but why would that matter ?

Short Logarithm Problems?

> ... non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said?

How short can it be ? Can it be found efficiently?

> Fair question, but why would that matter ?

Short Logarithm Problems?

> ... non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said?

How short can it be ? Can it be found efficiently?

Fair question, but why would that matter ?

Short Logarithm Problems?

Example (DLP over $\left.(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$

$\operatorname{dim} \mathscr{L}=1$: Shortest solution trivially found...

Example (Inside Index Caculus)

Step 1 (relation collection) find many vectors $M=\left(v_{1} \ldots v_{m}\right) \in \mathscr{L}$. Step 2 (linear algebra) Solve the linear system $M x=y$.

Step 2 is faster if M is sparse: we want to make M "shorter" ! But $\operatorname{dim} \mathscr{L}=$ HUGE: limited to ad-hoc micro improvements.

More interesting cases for lattice theoretician and algorithmicians ?

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice
[Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice

> Summary: These lattices admits a known almost-orthogonal basis \Rightarrow Can use lattice algorithm to solve 'short-DLP'
> \Rightarrow Break some crypto

[Chor Rivest '89]: Logarithmic lattices over ($\mathbb{Z} / p \mathbb{Z}$)
Summary: Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto
[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z} / p \mathbb{Z})$
Summary: Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice
[Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice
Summary: These lattices admits a known almost-orthogonal basis
\Rightarrow Can use lattice algorithm to solve 'short-DLP'
\Rightarrow Break some crypto
[Chor Rivest '89]: Logarithmic lattices over $(\mathbb{Z} / p \mathbb{Z})^{\times}$ Summary: Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto.
[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z} / p \mathbb{Z})$
Summary: Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound.

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice
[Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice
Summary: These lattices admits a known almost-orthogonal basis
\Rightarrow Can use lattice algorithm to solve 'short-DLP'
\Rightarrow Break some crypto
[Chor Rivest '89]: Logarithmic lattices over $(\mathbb{Z} / p \mathbb{Z})^{\times}$
Summary: Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto.
[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z} / p \mathbb{Z})^{\times}$
Summary: Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound.

Part 1:
 The \mathscr{L} ogarithmic \mathscr{L} attice of cyclotomic units

Part 2:

Short Stickelberger's $\mathscr{C l}$ lass relations

Part 3:
Chor-Rivest dense \mathscr{S} phere- \mathscr{P} acking with efficient decoding

For a Survey on 1 and 2, see [D. '17],
http://www.nieuwarchief.nl/serie5/pdf/naw5-2017-18-3-184.pdf

Part 1:
 The \mathscr{L} ogarithmic \mathscr{L} attice of cyclotomic units

Ideals and Principal Ideals

Cyclotomic number field: $K\left(=\mathbb{Q}\left(\omega_{m}\right)\right)$, ring of integer $R=\mathscr{O}_{K}\left(=\mathbb{Z}\left[\omega_{m}\right]\right)$.

Definition (Ideals)

- An integral ideal is a subset $\mathfrak{h} \subset \mathscr{O}_{K}$ closed under addition, and by multiplication by elements of \mathscr{O}_{K},
- A (fractional) ideal is a subset $\mathfrak{f} \subset K$ of the form $\mathfrak{f}=\frac{1}{x} \mathfrak{h}$, where $x \in \mathbb{Z}$,
- A principal ideal is an ideal \mathfrak{f} of the form $\mathfrak{f}=g \mathscr{O}_{K}$ for some $g \in K$. In particular, ideals are lattices.

We denote \mathscr{F}_{K} the set of fractional ideals, and \mathscr{P}_{K} the set of principal ideals.

The Problem

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).
Note that $g \in(h)$ is a generator iff $g=u \cdot h$ for some unit $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times}.

The Problem

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).
Note that $g \in(h)$ is a generator iff $g=u \cdot h$ for some unit $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times}.

Translation an to additive problem

Take logarithms:

$$
\log : g \mapsto\left(\log \left|\sigma_{1}(g)\right|, \ldots, \log \left|\sigma_{n}(g)\right|\right) \in \mathbb{R}^{n}
$$

where the σ_{i} 's are the canonical embeddings $\mathbb{K} \rightarrow \mathbb{C}$.

The Unit Group and the log-unit lattice

Let R^{\times}denotes the multiplicative group of units of R. Let

$$
\Lambda=\log R^{\times} .
$$

Theorem (Dirichlet unit Theorem)

$\Lambda \subset \mathbb{R}^{n}$ is a lattice (of a given rank).

The Unit Group and the log-unit lattice

Let R^{\times}denotes the multiplicative group of units of R. Let

$$
\Lambda=\log R^{\times} .
$$

Theorem (Dirichlet unit Theorem)

$\Lambda \subset \mathbb{R}^{n}$ is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if

$$
\log g \in \log h+\Lambda
$$

Moreover the map Log preserves some geometric information: g is the "smallest" generator iff $\log g$ is the "smallest" in Log $h+\Lambda$.

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^{2}$

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^{2}$

- x-axis: $\sigma_{1}(a+b \sqrt{2})=a+b \sqrt{2}$
- y-axis: $\sigma_{2}(a+b \sqrt{2})=a-b \sqrt{2}$
- component-wise additions and multiplications

■ "Orthogonal" elements

- Units (algebraic norm 1)
- "Isonorms" curves

Example: Logarithmic Embedding $\log \mathbb{Z}[\sqrt{2}]$

$(\{\bullet\},+)$ is a sub-monoid of \mathbb{R}^{2}

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

$\Lambda=(\{\bullet\},+) \cap \backslash$ is a lattice of \mathbb{R}^{2}, orthogonal to $(1,1)$

Example: Logarithmic Embedding $\log \mathbb{Z}[\sqrt{2}]$

$\{\bullet\} \cap \backslash$ are shifted finite copies of Λ

Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.

Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.

Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.

Reduction modulo $\Lambda=\log \mathbb{Z}[\sqrt{2}]^{\times}$

The reduction $\bmod \Lambda$ for various fundamental domains.

Strategy

A two-step approach was suggested in [Bernstein '14, Cambell Groves Shepherd '14]:

- Use fancy quantum algorithm to recover any generator h [Eisenträger Hallgren Kitaev Song '14, Biasse Song '16]
- Reduce modulo units to obtain a short generator [Cramer D. Peikert Regev '16]
For the analysis of the second step we need an explicit basis of the units of $\mathbb{Z}[\omega]$. It is (almost) given by the set

$$
u_{i}=\frac{1-\omega^{i}}{1-\omega} \text { for } i \in(\mathbb{Z} / m \mathbb{Z})^{\times}
$$

Almost Orthogonal

Using techniques from Analytic Number Theory (bounds on Dirichlet L-series), we can prove that the basis $\left(\log u_{i}\right)_{i}$ is almost orthogonal. Implies efficient algorithms for

- Bounded Distance Decoding problem (BDD)
- Approximate Close Vector Problem (approx-CVP) for interesting parameters.

Short Generator Recovery, BDD setting

If there exists an unusually short generator g (as in certain crypto settings), we can recover it in classical poly-time from any generator $h=u g$.

Short Generator Recovery, worst-case

For any generator h, we can recover a generator g of length at most $\exp (\tilde{O}(\sqrt{n}))$ larger than the shortest vector of (h).

Comparison with General lattices

General Lattices

Principal Ideal lattices

Comparison with General lattices

General Lattices

Principal Ideal lattices

Can we remove the Principality condition ?

Part 2:

Short Stickelberger's Class relations

The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:

$$
\mathfrak{a b}=\left\{\sum_{\text {finite }} a_{i} b_{i}, \quad a_{i} \in \mathfrak{a}, b_{i} \in \mathfrak{b}\right\} .
$$

The product of two principal ideals remains principal:

$$
\left(a \mathscr{O}_{K}\right)\left(b \mathscr{O}_{K}\right)=(a b) \mathscr{O}_{K} .
$$

form an abelian group ${ }^{1}, \mathscr{P}_{K}$ is a subgroup of it.

Definition (Class Group)

Their quotient forms the class group $\mathrm{Cl}_{K}=\mathscr{F}_{K} / \mathscr{P}_{K}$ The class of an ideal $\mathfrak{a} \in \mathscr{F}_{K}$ is denoted $[\mathfrak{a}] \in \mathrm{Cl}_{K}$
\square

The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:

$$
\mathfrak{a b}=\left\{\sum_{\text {finite }} a_{i} b_{i}, \quad a_{i} \in \mathfrak{a}, b_{i} \in \mathfrak{b}\right\} .
$$

The product of two principal ideals remains principal:

$$
\left(a \mathscr{O}_{K}\right)\left(b \mathscr{O}_{K}\right)=(a b) \mathscr{O}_{K} .
$$

\mathscr{F}_{K} form an abelian group ${ }^{1}, \mathscr{P}_{K}$ is a subgroup of it.

Definition (Class Group)

Their quotient forms the class group $\mathrm{Cl}_{K}=\mathscr{F}_{K} / \mathscr{P}_{K}$. The class of an ideal $\mathfrak{a} \in \mathscr{F}_{K}$ is denoted $[\mathfrak{a}] \in \mathrm{Cl}_{K}$.

An ideal \mathfrak{a} is principal iff $[\mathfrak{a}]=\left[\mathscr{O}_{K}\right]$.
${ }^{1}$ with neutral element \mathscr{O}_{K}

The problem: Reducing to the principal case

Definition (The Close Principal Multiple problem)

- Given an ideal \mathfrak{a}, and an factor F
- Find a small integral ideal \mathfrak{b} such that $[\mathfrak{a b}]=\left[\mathscr{O}_{K}\right]$ and $N \mathfrak{b} \leq F$

Note: Smallness with respect to the Algebraic Norm N of \mathfrak{b}, (essentially the volume of \mathfrak{b} as a lattice).

Choose a factor basis $\mathfrak{B}=\left\{\mathfrak{p}_{1} \ldots \mathfrak{p}_{n}\right\}$ and restrict the search to \mathfrak{b} of the form $\mathfrak{b}=\prod \mathfrak{p}_{i}^{v_{i}}$. I.e. solve the short discrete-logarithm problem

$$
\vec{v} \in \log _{\mathfrak{B}}\left([\mathfrak{a}]^{-1}\right)
$$

How to solve it?

Again, two steps:

- Find an arbitrary solution $\vec{v} \in \log _{\mathfrak{B}}\left([\mathfrak{a}]^{-1}\right)$ [Eisentrager Kitaev Hallgren Song '14, Biasse Song '16]
- Reduce it modulo \mathscr{L} ?

But do we even know $\mathscr{L}=\log _{\mathfrak{B}}\left(\left[\mathscr{O}_{K}\right]\right)$?

Yes, we know \mathscr{L} ! (Well Almost)

For a well chosen factor basis, e.g. $=\{\sigma(\mathfrak{p}), \sigma \in G:=\operatorname{Gal}(K / \mathbb{Q})\}, \mathscr{L}$ is almost given by Stickelberger:

Definition (The Stickelberger ideal)

The Stickelberger element $\theta \in \mathbb{Q}[G]$ is defined as

$$
\theta=\sum\left(\frac{a}{m} \bmod 1\right) \sigma_{a}^{-1} \quad \text { where } G \ni \sigma_{a}: \omega \mapsto \omega^{a} .
$$

The Stickelberger ideal is defined as $S=\mathbb{Z}[G] \cap \theta \mathbb{Z}[G]$.

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates $\mathrm{Cl}: \forall e \in S, \mathfrak{a} \subset K:\left[\mathfrak{a}^{\mathrm{e}}\right]=\left[\mathscr{O}_{K}\right]$. In particular, if $\mathfrak{B}=\left\{\mathfrak{p}^{\sigma}, \sigma \in G\right\}$, then $S \subset \mathscr{L}$.

Turn-out: the natural basis of S is almost orthogonal... Again

Yes, we know \mathscr{L} ! (Well Almost)

For a well chosen factor basis, e.g. $=\{\sigma(\mathfrak{p}), \sigma \in G:=\operatorname{Gal}(K / \mathbb{Q})\}, \mathscr{L}$ is almost given by Stickelberger:

Definition (The Stickelberger ideal)

The Stickelberger element $\theta \in \mathbb{Q}[G]$ is defined as

$$
\theta=\sum\left(\frac{a}{m} \bmod 1\right) \sigma_{a}^{-1} \quad \text { where } G \ni \sigma_{a}: \omega \mapsto \omega^{a} .
$$

The Stickelberger ideal is defined as $S=\mathbb{Z}[G] \cap \theta \mathbb{Z}[G]$.

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates $\mathrm{Cl}: \forall e \in S, \mathfrak{a} \subset K:\left[\mathfrak{a}^{\mathrm{e}}\right]=\left[\mathscr{O}_{K}\right]$. In particular, if $\mathfrak{B}=\left\{\mathfrak{p}^{\sigma}, \sigma \in G\right\}$, then $S \subset \mathscr{L}$.

Turn-out: the natural basis of S is almost orthogonal... Again!

Approx-Ideal-SVP in poly-time for large α

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class Relation

\Rightarrow Approx-Ideal-SVP solvable in Quantum poly-time, for

$$
\mathscr{R}=\mathbb{Z}\left[\omega_{m}\right], \quad \alpha=\exp (\tilde{O}(\sqrt{n}))
$$

General Lattices

 Ideal lattices

Approx-Ideal-SVP in poly-time for large α

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class

 Relation\Rightarrow Approx-Ideal-SVP solvable in Quantum poly-time, for

$$
\mathscr{R}=\mathbb{Z}\left[\omega_{m}\right], \quad \alpha=\exp (\tilde{O}(\sqrt{n}))
$$

General Lattices

Ideal lattices

Takeaway: Dual viewpoint (Caley-Graphs and Lattices)

$$
\begin{gathered}
\mu: \vec{v} \in \mathbb{Z}^{2} \mapsto v_{1}+2 v_{2} \bmod 5, \Lambda=\operatorname{ker} \mu, \\
\text { then } \mathbb{Z} / 5 \mathbb{Z} \simeq \mathbb{Z}^{2} / \Lambda
\end{gathered}
$$

Cayley-Graph $(\mathbb{Z} / 5 \mathbb{Z},\{1,2\})$

Distance
Diameter
Shortest loop
Mixing time
$\mathbb{Z}^{\{1,2\}} / \Lambda$

ℓ_{1}-distance $\bmod \Lambda$ Covering radius Minimal vector Smoothing parameter

Part 3:

Chor-Rivest dense \mathscr{S} phere- \mathscr{P} acking with efficient decoding

Dense Lattice with Efficient Decoding

Construct a lattice \mathscr{L} together with an efficient decoding algorithm for \mathscr{L}

Bounded Distance Decoding with radius r

- Given $t=v+e$ where $v \in \mathscr{L}$ and $\|e\| \leq r$
- Recover v and/or e

The problem can only be solved up to half the minimal distance:

$$
r \leq \lambda_{1}(\mathscr{L}) / 2
$$

(otherwise solution are not uniques). We would like to find a lattice for which the above can be done efficiently up to r close to Minkowsky's bound:

$$
\begin{gathered}
\lambda_{1}^{(1)}(\mathscr{L}) \leq O(n) \cdot \operatorname{det}(\mathscr{L})^{-1 / n} \\
\lambda_{1}^{(2)}(\mathscr{L}) \leq O(\sqrt{n}) \cdot \operatorname{det}(\mathscr{L})^{-1 / n}
\end{gathered}
$$

Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

$$
\begin{aligned}
& \text { Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17]. } \\
& \text { Originally over finite-field polynomials } \mathbb{F}_{p}[X] \text {, but variants also exists over } \\
& \text { the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00]. }
\end{aligned}
$$

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].
Originally over finite-field polynomials $\mathbb{F}_{p}[X]$, but variants also exists over
the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00].
[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].
Originally over finite-field polynomials $\mathbb{F}_{p}[X]$, but variants also exists over the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00].
[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].
Originally over finite-field polynomials $\mathbb{F}_{p}[X]$, but variants also exists over the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00].
[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.
[D. Pierrot '18]: Remove crypto from [OTU '00], get a good decodable lattice.

Chor-Rivest Lattice

Choose a factor basis of small primes, coprimes to $Q=3^{k}$: $\mathfrak{B}=\left\{2,5,7,11,13, \ldots, p_{n}\right\} \subset \mathbb{Z},[\cdot]: x \mapsto x \bmod Q$.

$$
\mathscr{L}=\left\{v \in \mathbb{Z}^{n} \text { s.t. } \prod p_{i}^{v_{i}}=1 \bmod Q\right\}
$$

$\operatorname{dim} \mathscr{L}=n, \operatorname{det} \mathscr{L} \leq \phi(Q) \leq Q$. Note that $p_{n} \sim n \log n$.

Decoding Chor-Rivest Lattice (positive errors)

If $p_{n}^{r}<Q$ then one can decode integral positive errors up to ℓ_{1} radius r in the lattice \mathscr{L}. That is:

- given $t=v+e$, for $v \in \mathscr{L}$ and $e \in \mathbb{Z}_{\geq 0}^{n},\|e\|_{1} \leq r$
- we can efficiently recover v and e.

Compute

$$
f=\prod p_{i}^{t_{i}} \bmod Q=\prod p_{i}^{v_{i}} \prod p_{i}^{e_{i}} \bmod Q=\prod p_{i}^{e_{i}} \bmod Q
$$

The last product is in fact known over \mathbb{Z}, not just $\bmod Q$, since $\prod p_{i}^{e_{i}}<Q$. Factorize f (efficient trial division by $2,5, \ldots, p_{n}$), recover e, then v.

Decoding Chor-Rivest Lattice

Now assume $2 \cdot p_{n}^{r}<\sqrt{Q}$.

$$
f=\prod_{i \text { s.t. } e_{i}>0}^{n} p_{i}^{e_{i}} \cdot \prod_{i \text { s.t. } e_{i}<0} p_{i}^{e_{i}}=u / v \quad \bmod Q
$$

To recover $u=\prod_{i \text { s.t. } e_{i}>0}^{n} p_{i}^{e_{i}}$ and $v=\prod_{i \text { s.t. } e_{i}<0} p_{i}^{-e_{i}}$ not only modulo Q but in \mathbb{Z}, we use the following lemma.

Lemma (Rational reconstruction $\bmod Q$)

If u, v are positive coprime integers and invertible modulo m such that $u, v<\sqrt{m / 2}$, and if $f=u / v$ mod m, then $\pm(u, v)$ are the shortests vector of the 2-dimensional lattice

$$
L=\left\{(x, y) \in \mathbb{Z}^{2} \mid x-f y=0 \bmod Q\right\} .
$$

In particular, given f and m, one can recover (u, v) in polynomial time.

Asymptotic parameters

Choose $k=n$. This gives

$$
r^{(1)}=\Theta(n / \log n)=\Theta(n / \log n) \operatorname{det}(\mathscr{L})^{-1 / n} .
$$

Compare to Minkowsky's bound in ℓ_{1} norm:

$$
\lambda_{1}^{(1)}(\mathscr{L}) \leq O(n) \cdot \operatorname{det}(\mathscr{L})^{-1 / n}
$$

By norm inequality this directly imply decoding in ℓ_{2}-norm for a radius

$$
r^{(2)}=\Theta(\sqrt{n} / \log n)=\Theta(\sqrt{n} / \log n) \operatorname{det}(\mathscr{L})^{-1 / n}
$$

Compare to Minkowsky's bound in ℓ_{2} norm:

Asymptotic parameters

Choose $k=n$. This gives

$$
r^{(1)}=\Theta(n / \log n)=\Theta(n / \log n) \operatorname{det}(\mathscr{L})^{-1 / n} .
$$

Compare to Minkowsky's bound in ℓ_{1} norm:

$$
\lambda_{1}^{(1)}(\mathscr{L}) \leq O(n) \cdot \operatorname{det}(\mathscr{L})^{-1 / n}
$$

By norm inequality this directly imply decoding in ℓ_{2}-norm for a radius

$$
r^{(2)}=\Theta(\sqrt{n} / \log n)=\Theta(\sqrt{n} / \log n) \operatorname{det}(\mathscr{L})^{-1 / n}
$$

Compare to Minkowsky's bound in ℓ_{2} norm:

$$
\lambda_{1}^{(2)}(\mathscr{L}) \leq O(\sqrt{n}) \cdot \operatorname{det}(\mathscr{L})^{-1 / n}
$$

A paradoxical result ?

To the best of our knowledge, the best lattice with efficient BDD was Barnes-Wall, with BDD up to a radius $O(\sqrt[4]{n})$ away from Minkowsky's bound [Micciancio Nicolesi '08] (ℓ_{2} norm).

We are only $O(\log n)$ away from Minkowsky's bound, but this result is strange:

- We can construct \mathscr{L} efficiently.
- We can solve BDD efficiently in \mathscr{L}
- We don't know how to find short vectors in \mathscr{L}...

The last mile ?

We are still $O(\log n)$ away from Minkowsky's bound...
The issue is that we do not have enough small primes.
To get down to $O(1)$ away from Minkowsky's bound, we need

$$
n \text { primes of 'size' } O(1) \text {. }
$$

- Switching back from \mathbb{Z} to $\mathbb{F}_{p}[X]$ does not solve improve this loss
- Elliptic curves could ?
- Connection with Mordel-Weil lattices ? [Shioda '91, Elkies '94]

\mathscr{T} hanks for your interest.

2) uestions ?

\mathscr{O} ther \mathscr{L} ogarithmic \mathscr{L} attices of interest ?

\mathscr{T} hanks for your interest.

$\mathscr{Q}_{\text {uestions ? }}$

\mathscr{O} ther \mathscr{L} ogarithmic \mathscr{L} attices of interest?

