

Léo Ducas

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Workshop: Computational Challenges in the Theory of Lattices ICERM, Brown University, Providence, RI, USA, April 23-27, 2018

L. Ducas (CWI)

April 2018 1 / 29

Continuous setting:

 $\Lambda \subset \mathbb{C}^n$: a lattice,

 \odot : component-wise product on \mathbb{C}^n .

$$\begin{aligned} \mathsf{Exp}_{\Lambda} &: \vec{v} \in \mathbb{C}^n \mapsto (\mathsf{exp}(v_1), \dots, \mathsf{exp}(v_n)) \odot \Lambda \\ & \mathscr{L} = \{ v \in \mathbb{C}^n \text{ s.t. } \mathsf{Exp}_{\Lambda}(v) = \Lambda \}. \end{aligned}$$

Discrete setting:

 $\mathfrak{B} = \{\mathfrak{p}_1, \dots \mathfrak{p}_n\} \subset K^{\times}: \text{ a set of primes of a field } K.$ $[\cdot]: K^{\times} \to G, \text{ a multiplicative morphism to a finite abelian group } G.$

$$\begin{split} \mathsf{Exp}_{\mathfrak{B}} &: \vec{v} \in \mathbb{Z}^n \mapsto \left[\prod \mathfrak{p}_i^{v_i} \right] \\ \mathscr{L} &= \{ v \in \mathbb{Z}^n \text{ s.t. } \mathsf{Exp}_{\mathfrak{B}}(v) = \mathit{Id}_G \}. \end{split}$$

< 3 > < 3

Logarithm Problem

Logarithms are only defined $\operatorname{mod} \mathscr{L}$:

$$\begin{split} \mathsf{Exp}_{\mathfrak{B}}(x) &= \mathsf{Exp}_{\mathfrak{B}}(y) \Leftrightarrow x \in y + \mathscr{L} \\ \mathsf{Log}_{\mathfrak{B}}(g) &:= \mathsf{Exp}_{\mathfrak{B}}^{-1}(g) = x + \mathscr{L} \text{ s.t. } \mathsf{Exp}_{\mathfrak{B}}(x) = g \end{split}$$

Hidden Subgroup Problem

Find the lattice \mathscr{L} (a set of generators of \mathscr{L}). (typically: find one non-zero vector \Rightarrow find the whole lattice) Classically: Index Calculus Methods, Quantumly: **[Eisentrger Hallgren Kitaev Song 14]**

Discrete Logarithm Problem mod p

 $R = \mathbb{Z}, g, h \in (\mathbb{Z}/p\mathbb{Z})^{\times}, [\cdot] : x \mapsto x \mod p, \mathscr{L} = (p-1)\mathbb{Z}$ is known. DLP: Find a representative $x \in Log(g)$

イロト イヨト イヨト

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

Fair question, but why would that matter ?

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

Fair question, but why would that matter ?

L. Ducas (CWI)

Logarithmic Lattices

April 2018 4 / 29

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

Fair question, but why would that matter ?

L. Ducas (CWI)

Logarithmic Lattices

April 2018 4 / 29

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

Fair question, but why would that matter ?

L. Ducas	(CWI)

Example (DLP over $(\mathbb{Z}/p\mathbb{Z})^{\times}$)

 $\dim \mathscr{L} = 1: \text{ Shortest solution trivially found...}$

Example (Inside Index Caculus)

Step 1 (relation collection) find many vectors $M = (v_1 \dots v_m) \in \mathscr{L}$. Step 2 (linear algebra) Solve the linear system Mx = y.

Step 2 is faster if M is sparse: we want to make M "shorter" ! But dim $\mathscr{L} = HUGE$: limited to ad-hoc micro improvements.

More interesting cases for lattice theoretician and algorithmicians ?

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice [Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice

[Chor Rivest '89]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ **Summary:** Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto.

[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ **Summary:** Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound.

<ロト </p>

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice [Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice

[Chor Rivest '89]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ Summary: Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto.

[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ **Summary:** Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound.

イロト イヨト イヨト イヨト

3 encounters with \mathscr{L} ogarithmic \mathscr{L} attices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice [Cramer D. Wesolowsky 17]: Stickelberger's Class-relation lattice

[Chor Rivest '89]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ Summary: Make certain 'short-DLP' easy by design, get an efficiently decodable lattice, hide it for Crypto.

[D. Pierrot '18]: Logarithmic lattices over $(\mathbb{Z}/p\mathbb{Z})^{\times}$ **Summary:** Remove crypto from Chor-Rivest. Optimize asymptotically. Get close to Minkowski's bound.

(日) (周) (三) (三)

Part 1: The Logarithmic Lattice of cyclotomic units

\sim

Part 2: Short Stickelberger's Class relations

\sim

Part 3: Chor-Rivest dense Sphere-Packing with efficient decoding

For a Survey on 1 and 2, see [D. '17], http://www.nieuwarchief.nl/serie5/pdf/naw5-2017-18-3-184.pdf

L. Ducas (CWI)

Logarithmic Lattices

Image: Image:

April 2018 7 / 29

Part 1: The *L*ogarithmic *L*attice of cyclotomic units

Ideals and Principal Ideals

Cyclotomic number field: $K(=\mathbb{Q}(\omega_m))$, ring of integer $R = \mathscr{O}_K(=\mathbb{Z}[\omega_m])$.

Definition (Ideals)

- An integral ideal is a subset h ⊂ O_K closed under addition, and by multiplication by elements of O_K,
- ▶ A (fractional) ideal is a subset $\mathfrak{f} \subset K$ of the form $\mathfrak{f} = \frac{1}{x}\mathfrak{h}$, where $x \in \mathbb{Z}$,

• A **principal ideal** is an ideal \mathfrak{f} of the form $\mathfrak{f} = g \mathcal{O}_K$ for some $g \in K$. In particular, ideals are lattices.

We denote $\mathscr{F}_{\mathcal{K}}$ the set of fractional ideals, and $\mathscr{P}_{\mathcal{K}}$ the set of principal ideals.

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).

Note that $g \in (h)$ is a generator iff $g = u \cdot h$ for some <u>unit</u> $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times} .

Short generator recovery

Given $h \in R$, find a small generator g of the ideal (h).

Note that $g \in (h)$ is a generator iff $g = u \cdot h$ for some <u>unit</u> $u \in \mathbb{R}^{\times}$. We need to explore the (multiplicative) unit group R^{\times} .

Translation an to additive problem

Take logarithms:

$$\mathsf{Log}: g \mapsto (\mathsf{log} | \sigma_1(g) |, \ldots, \mathsf{log} | \sigma_n(g) |) \in \mathbb{R}^n$$

where the σ_i 's are the canonical embeddings $\mathbb{K} \to \mathbb{C}$.

The Unit Group and the log-unit lattice

Let R^{\times} denotes the multiplicative group of units of R. Let

 $\Lambda = \operatorname{Log} R^{\times}.$

Theorem (Dirichlet unit Theorem)

 $\Lambda \subset \mathbb{R}^n$ is a lattice (of a given rank).

The Unit Group and the log-unit lattice

Let R^{\times} denotes the multiplicative group of units of R. Let

 $\Lambda = \operatorname{Log} R^{\times}.$

Theorem (Dirichlet unit Theorem)

 $\Lambda \subset \mathbb{R}^n$ is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if

 $\log g \in \log h + \Lambda$.

Moreover the map Log preserves some geometric information: g is the "smallest" generator iff Log g is the "smallest" in Log $h + \Lambda$.

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^2$

- x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise additions and multiplications

Example: Embedding $\mathbb{Z}[\sqrt{2}] \hookrightarrow \mathbb{R}^2$

- x-axis: σ₁(a + b√2) = a + b√2
 y-axis: σ₂(a + b√2) = a b√2
- component-wise additions and multiplications

"Orthogonal" elements Units (algebraic norm 1) "Isonorms" curves

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

 $(\{\bullet\},+)$ is a sub-monoid of \mathbb{R}^2

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

Cramer, **D.**, Peikert, Regev (Leiden, CWI,NY

Recovering Short Generators 4 🗆 🖡 🖉 🗗 🖓 RUROBRYPT May 2016 📒 97/02

Example: Logarithmic Embedding Log $\mathbb{Z}[\sqrt{2}]$

Cramer, **D.**, Peikert, Regev (Leiden, CWI,NY

Recovering Short Generators 🕢 🗆 🖌 🖓 🖻 🗷 🖓 🖓 RVPT 🕯 May 2016 📃 97/02

The reduction $mod\Lambda$ for various fundamental domains.

A two-step approach was suggested in [Bernstein '14, Cambell Groves Shepherd '14]:

- Use fancy quantum algorithm to recover any generator h
 [Eisenträger Hallgren Kitaev Song '14, Biasse Song '16]
- Reduce modulo units to obtain a short generator [Cramer D. Peikert Regev '16]

For the analysis of the second step we need an explicit basis of the units of $\mathbb{Z}[\omega].$ It is (almost) given by the set

$$u_i = rac{1-\omega^i}{1-\omega} ext{ for } i \in (\mathbb{Z}/m\mathbb{Z})^ imes$$

Using techniques from Analytic Number Theory (bounds on Dirichlet *L*-series), we can prove that the basis $(\text{Log } u_i)_i$ is **almost orthogonal**. Implies efficient algorithms for

- Bounded Distance Decoding problem (BDD)
- Approximate Close Vector Problem (approx-CVP)

for interesting parameters.

Short Generator Recovery, BDD setting

If there exists an unusually short generator g (as in certain crypto settings), we can recover it in classical poly-time from any generator h = ug.

Short Generator Recovery, worst-case

For any generator h, we can recover a generator g of length at most $\exp(\tilde{O}(\sqrt{n}))$ larger than the shortest vector of (h).

Can we remove the **Principality** condition ?

L. Ducas (CWI)

Logarithmic Lattices

April 2018 12 / 29

< □ > < @ > < @ > <

Can we remove the **Principality** condition ?

・ロト ・聞ト ・ ヨト ・ ヨト

Part 2: Short Stickelberger's Class relations

The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:

$$\mathfrak{ab} = \left\{ \sum_{\text{finite}} a_i b_i, \quad a_i \in \mathfrak{a}, b_i \in \mathfrak{b}
ight\}.$$

The product of two principal ideals remains principal:

$$(a\mathcal{O}_{K})(b\mathcal{O}_{K})=(ab)\mathcal{O}_{K}.$$

 $\mathscr{F}_{\mathcal{K}}$ form an **abelian group**¹, $\mathscr{P}_{\mathcal{K}}$ is a **subgroup** of it.

Definition (Class Group)

Their quotient forms the **class group** $\operatorname{Cl}_{K} = \mathscr{F}_{K} / \mathscr{P}_{K}$. The class of an ideal $\mathfrak{a} \in \mathscr{F}_{K}$ is denoted $[\mathfrak{a}] \in \operatorname{Cl}_{K}$.

An ideal \mathfrak{a} is principal iff $[\mathfrak{a}] = [\mathscr{O}_{\mathcal{K}}]$

with neutral element \mathcal{O}_K

L. Ducas (CWI)

The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:

$$\mathfrak{ab} = \left\{ \sum_{\text{finite}} a_i b_i, \quad a_i \in \mathfrak{a}, b_i \in \mathfrak{b}
ight\}.$$

The product of two principal ideals remains principal:

$$(a\mathcal{O}_{K})(b\mathcal{O}_{K}) = (ab)\mathcal{O}_{K}.$$

 $\mathscr{F}_{\mathcal{K}}$ form an **abelian group**¹, $\mathscr{P}_{\mathcal{K}}$ is a **subgroup** of it.

Definition (Class Group)

Their quotient forms the **class group** $\operatorname{Cl}_{\mathcal{K}} = \mathscr{F}_{\mathcal{K}} / \mathscr{P}_{\mathcal{K}}$. The class of an ideal $\mathfrak{a} \in \mathscr{F}_{\mathcal{K}}$ is denoted $[\mathfrak{a}] \in \operatorname{Cl}_{\mathcal{K}}$.

An ideal \mathfrak{a} is principal iff $[\mathfrak{a}] = [\mathscr{O}_{\mathcal{K}}].$

¹with neutral element \mathscr{O}_{K}

L. Ducas (CWI)

Definition (The Close Principal Multiple problem)

- Given an ideal α, and an factor F
- ▶ Find a small integral ideal \mathfrak{b} such that $[\mathfrak{a}\mathfrak{b}] = [\mathscr{O}_K]$ and $N\mathfrak{b} \leq F$

Note: Smallness with respect to the Algebraic Norm N of \mathfrak{b} , (essentially the **volume** of \mathfrak{b} as a lattice).

Choose a factor basis $\mathfrak{B} = {\mathfrak{p}_1 \dots \mathfrak{p}_n}$ and restrict the search to \mathfrak{b} of the form $\mathfrak{b} = \prod \mathfrak{p}_i^{v_i}$. I.e. solve the **short discrete-logarithm problem**

$$\vec{v} \in \mathsf{Log}_{\mathfrak{B}}([\mathfrak{a}]^{-1}).$$

Again, two steps:

- Find an arbitrary solution v ∈ Log_B([a]⁻¹)
 [Eisentrager Kitaev Hallgren Song '14, Biasse Song '16]
- Reduce it modulo \mathscr{L} ?

But do we even know $\mathscr{L} = Log_{\mathfrak{B}}([\mathscr{O}_{\mathcal{K}}])$?

Yes, we know \mathscr{L} ! (Well Almost)

For a well chosen factor basis, e.g. = { $\sigma(\mathfrak{p}), \sigma \in G := \text{Gal}(K/\mathbb{Q})$ }, \mathscr{L} is almost given by Stickelberger:

Definition (The Stickelberger ideal)

The **Stickelberger element** $\theta \in \mathbb{Q}[G]$ is defined as

$$\theta = \sum \left(\frac{a}{m} \mod 1\right) \sigma_a^{-1} \quad \text{where } G \ni \sigma_a : \omega \mapsto \omega^a.$$

The **Stickelberger ideal** is defined as $S = \mathbb{Z}[G] \cap \theta \mathbb{Z}[G]$.

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates Cl: $\forall e \in S, \mathfrak{a} \subset K$: $[\mathfrak{a}^e] = [\mathscr{O}_K]$. In particular, if $\mathfrak{B} = \{\mathfrak{p}^{\sigma}, \sigma \in G\}$, then $S \subset \mathscr{L}$.

Turn-out: the natural basis of *S* is almost orthogonal... Again !

イロト 不得下 イヨト イヨト 二日

Yes, we know \mathscr{L} ! (Well Almost)

For a well chosen factor basis, e.g. = { $\sigma(\mathfrak{p}), \sigma \in G := \text{Gal}(K/\mathbb{Q})$ }, \mathscr{L} is almost given by Stickelberger:

Definition (The Stickelberger ideal)

The **Stickelberger element** $\theta \in \mathbb{Q}[G]$ is defined as

$$\theta = \sum \left(\frac{a}{m} \mod 1\right) \sigma_a^{-1} \quad \text{where } G \ni \sigma_a : \omega \mapsto \omega^a.$$

The **Stickelberger ideal** is defined as $S = \mathbb{Z}[G] \cap \theta \mathbb{Z}[G]$.

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates Cl: $\forall e \in S, \mathfrak{a} \subset K$: $[\mathfrak{a}^e] = [\mathscr{O}_K]$. In particular, if $\mathfrak{B} = \{\mathfrak{p}^{\sigma}, \sigma \in G\}$, then $S \subset \mathscr{L}$.

Turn-out: the natural basis of S is almost orthogonal... Again !

L. Ducas (CWI)

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Approx-Ideal-SVP in poly-time for large α

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class Relation

 \Rightarrow Approx-Ideal-SVP solvable in Quantum poly-time, for

$$\mathscr{R} = \mathbb{Z}[\omega_m], \quad \alpha = \exp(\tilde{O}(\sqrt{n})).$$

L. Ducas (CWI)

April 2018 18 / 29

Approx-Ideal-SVP in poly-time for large α

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class Relation

 \Rightarrow Approx-Ideal-SVP solvable in Quantum poly-time, for

$$\mathscr{R} = \mathbb{Z}[\omega_m], \quad \alpha = \exp(\tilde{O}(\sqrt{n})).$$

L. Ducas (CWI)

Takeaway: Dual viewpoint (Caley-Graphs and Lattices)

$$\mu: \vec{v} \in \mathbb{Z}^2 \mapsto v_1 + 2v_2 \mod 5, \Lambda = \ker \mu,$$

then $\mathbb{Z}/5\mathbb{Z} \simeq \mathbb{Z}^2/\Lambda$

Diameter Shortest loop Mixing time

ℓ₁-distance mod Λ Covering radius Minimal vector Smoothing parameter

Part 3: Chor-Rivest dense Sphere-Packing with efficient decoding

L. Ducas (CWI)

Logarithmic Lattices

April 2018 20 / 29

Dense Lattice with Efficient Decoding

Construct a lattice ${\mathscr L}$ together with an efficient decoding algorithm for ${\mathscr L}$

Bounded Distance Decoding with radius r

- Given t = v + e where $v \in \mathscr{L}$ and $||e|| \leq r$
- Recover v and/or e

The problem can only be solved up to half the minimal distance:

$$r \leq \lambda_1(\mathscr{L})/2$$

(otherwise solution are not uniques). We would like to find a lattice for which the above can be done efficiently up to r close to Minkowsky's bound:

$$\lambda_1^{(1)}(\mathscr{L}) \leq O(n) \cdot \det(\mathscr{L})^{-1/n} \ \lambda_1^{(2)}(\mathscr{L}) \leq O(\sqrt{n}) \cdot \det(\mathscr{L})^{-1/n}$$

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].

Originally over finite-field polynomials $\mathbb{F}_p[X]$, but variants also exists over the integers: **[Naccache Stern '97, Okamoto Tanaka Uchiyama '00]**.

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

[D. Pierrot '18]: Remove crypto from [OTU '00], get a good decodablelattice.Introduction<t

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].

Originally over finite-field polynomials $\mathbb{F}_p[X]$, but variants also exists over the integers: **[Naccache Stern '97, Okamoto Tanaka Uchiyama '00]**.

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

[D. Pierrot '18]: Remove crypto from [OTU '00], get a good decodable lattice.

L. Ducas (CWI)

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].

Originally over finite-field polynomials $\mathbb{F}_p[X]$, but variants also exists over the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00].

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

[D. Pierrot '18]: Remove crypto from [OTU '00], get a good decodable lattice.

[Chor Rivest '89]: First knapsack-based cryptosystem that was not devastated. Idea:

- Subset-sums is hard
- Subset-product is easy (factoring numbers knowing potential factors)
- Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra '90, Li Ling Xing Yeo '17].

Originally over finite-field polynomials $\mathbb{F}_p[X]$, but variants also exists over the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama '00].

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from [NS'97], get a good decodable binary code.

[D. Pierrot '18]: Remove crypto from [OTU '00], get a good decodable lattice.

L. Ducas (CWI)

Choose a factor basis of **small** primes, coprimes to $Q = 3^k$: $\mathfrak{B} = \{2, 5, 7, 11, 13, \dots, p_n\} \subset \mathbb{Z}, [\cdot] : x \mapsto x \mod Q.$

$$\mathscr{L} = \{ \mathsf{v} \in \mathbb{Z}^n ext{ s.t. } \prod p_i^{\mathsf{v}_i} = 1 ext{ mod } Q \}$$

dim $\mathscr{L} = n$, det $\mathscr{L} \le \phi(Q) \le Q$. Note that $p_n \sim n \log n$.

If $p_n^r < Q$ then one can decode integral positive errors up to ℓ_1 radius r in the lattice \mathscr{L} . That is:

- given t = v + e, for $v \in \mathscr{L}$ and $e \in \mathbb{Z}_{>0}^n$, $||e||_1 \leq r$
- we can efficiently recover v and e.

Compute

$$f = \prod p_i^{t_i} \mod Q = \prod p_i^{v_i} \prod p_i^{e_i} \mod Q = \prod p_i^{e_i} \mod Q$$

The last product is in fact known over \mathbb{Z} , not just mod Q, since $\prod p_i^{e_i} < Q$. Factorize f (efficient trial division by 2, 5, ..., p_n), recover e, then v.

Decoding Chor-Rivest Lattice

Now assume $2 \cdot p_n^r < \sqrt{Q}$.

$$f = \prod_{i \text{ s.t. } e_i > 0}^n p_i^{e_i} \cdot \prod_{i \text{ s.t. } e_i < 0} p_i^{e_i} = u/v \mod Q.$$

To recover $u = \prod_{i \text{ s.t. } e_i > 0}^n p_i^{e_i}$ and $v = \prod_{i \text{ s.t. } e_i < 0}^n p_i^{-e_i}$ not only modulo Q but in \mathbb{Z} , we use the following lemma.

Lemma (Rational reconstruction mod Q)

If u, v are positive coprime integers and invertible modulo m such that $u, v < \sqrt{m/2}$, and if $f = u/v \mod m$, then $\pm(u, v)$ are the shortests vector of the 2-dimensional lattice

$$L = \{(x, y) \in \mathbb{Z}^2 | x - fy = 0 \mod Q\}.$$

In particular, given f and m, one can recover (u, v) in polynomial time.

Choose k = n. This gives

$$r^{(1)} = \Theta(n/\log n) = \Theta(n/\log n) \det(\mathscr{L})^{-1/n}.$$

Compare to Minkowsky's bound in ℓ_1 norm:

$$\lambda_1^{(1)}(\mathscr{L}) \leq O(n) \cdot \det(\mathscr{L})^{-1/n}$$

By norm inequality this directly imply decoding in $\ell_2\text{-norm}$ for a radius

$$r^{(2)} = \Theta(\sqrt{n}/\log n) = \Theta(\sqrt{n}/\log n) \det(\mathscr{L})^{-1/n}.$$

Compare to Minkowsky's bound in ℓ_2 norm:

$$\lambda_1^{(2)}(\mathscr{L}) \leq O(\sqrt{n}) \cdot \det(\mathscr{L})^{-1/n}.$$

Choose k = n. This gives

$$r^{(1)} = \Theta(n/\log n) = \Theta(n/\log n) \det(\mathscr{L})^{-1/n}.$$

Compare to Minkowsky's bound in ℓ_1 norm:

$$\lambda_1^{(1)}(\mathscr{L}) \leq O(n) \cdot \det(\mathscr{L})^{-1/n}$$

By norm inequality this directly imply decoding in $\ell_2\text{-norm}$ for a radius

$$r^{(2)} = \Theta(\sqrt{n}/\log n) = \Theta(\sqrt{n}/\log n) \det(\mathscr{L})^{-1/n}$$

Compare to Minkowsky's bound in ℓ_2 norm:

$$\lambda_1^{(2)}(\mathscr{L}) \leq O(\sqrt{n}) \cdot \det(\mathscr{L})^{-1/n}.$$

To the best of our knowledge, the best lattice with efficient BDD was Barnes-Wall, with BDD up to a radius $O(\sqrt[4]{n})$ away from Minkowsky's bound [Micciancio Nicolesi '08] (ℓ_2 norm).

We are only $O(\log n)$ away from Minkowsky's bound, but this result is strange:

- \blacktriangleright We can construct $\mathscr L$ efficiently.
- We can solve BDD efficiently in \mathscr{L}
- We don't know how to find short vectors in \mathscr{L} ...

We are still $O(\log n)$ away from Minkowsky's bound... The issue is that we do not have enough small primes. To get down to O(1) away from Minkowsky's bound, we need

n primes of 'size' O(1).

- Switching back from \mathbb{Z} to $\mathbb{F}_p[X]$ does not solve improve this loss
- Elliptic curves could ?
- Connection with Mordel-Weil lattices ? [Shioda '91, Elkies '94]

$\mathcal{T}\mathrm{hanks}$ for your interest.

\mathcal{O} ther \mathscr{L} ogarithmic \mathscr{L} attices of interest ?

L. Ducas (CWI)

Logarithmic Lattices

April 2018 29 / 29

 \mathscr{T} hanks for your interest.

\mathscr{Q} uestions ?

\mathcal{O} ther \mathscr{L} ogarithmic \mathscr{L} attices of interest ?

L. Ducas (CWI)

Logarithmic Lattices

April 2018 29 / 29