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Continuous setting:
A C C": a lattice,
®: component-wise product on C".

Expp : vV EC" — (exp(v1),...,exp(va)) © A
Z ={veC"st Expp(v) =A}

Discrete setting:
B = {p1,...pn} C K*: a set of primes of a field K.
[]: K* — G, a multiplicative morphism to a finite abelian group G.

Expg : VEZ" — {Hp:/’]
L ={veZ" st Expy(v)=lds}.
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Logarithm Problem

Logarithms are only defined mod.%:

Expp(x) = Expy(y) & x €y +.2
Logy(g) := Expy'(g) = x + & s.t. Expg(x) = g

Hidden Subgroup Problem

Find the lattice .Z (a set of generators of .¥).

(typically: find one non-zero vector = find the whole lattice)
Classically: Index Calculus Methods,

Quantumly: [Eisentrger Hallgren Kitaev Song 14]

Discrete Logarithm Problem modp

R=2Z, g he(Z/pZ)*, []:x— xmod p, £ = (p—1)Z is known.
DLP: Find a representative x € Log(g)
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Short Logarithm Problems ?

. non-zero vector in a lattice (coset) ...
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. non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

L. Ducas (CWI) Logarithmic Lattices April 2018 4 /29



Short Logarithm Problems ?

. non-zero vector in a lattice (coset) ...

Non-zero vector in a lattice, you said ?

How short can it be ? Can it be found efficiently ?

Fair question, but why would that matter ?
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Short Logarithm Problems ?

Example (DLP over (Z/pZ)*)
dim .Z = 1: Shortest solution trivially found...

Example (Inside Index Caculus)

Step 1 (relation collection) find many vectors M = (vq...vp) € Z.
Step 2 (linear algebra) Solve the linear system Mx = y.

Step 2 is faster if M is sparse: we want to make M “shorter” !
But dim . = HUGE: limited to ad-hoc micro improvements.

More interesting cases for lattice theoretician and algorithmicians ?
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3 encounters with o%garithmic Yittices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice
[Cramer D. Wesolowsky 17]: Stickelberger’'s Class-relation lattice

Summary: These lattices admits a known almost-orthogonal basis
= Can use lattice algorithm to solve ‘short-DLP’
= Break some crypto
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3 encounters with o%garithmic Yittices

[Cramer D. Peikert Regev 16]: Dirichlet's Unit lattice
[Cramer D. Wesolowsky 17]: Stickelberger’'s Class-relation lattice

Summary: These lattices admits a known almost-orthogonal basis
= Can use lattice algorithm to solve ‘short-DLP’
= Break some crypto

[Chor Rivest '89]: Logarithmic lattices over (Z/pZ)*
Summary: Make certain ‘short-DLP’" easy by design, get an efficiently
decodable lattice, hide it for Crypto.

[D. Pierrot '18]: Logarithmic lattices over (Z/pZ)*

Summary: Remove crypto from Chor-Rivest. Optimize asymptotically.
Get close to Minkowski's bound.
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Part 1:
The D%garithmic Dttice of cyclotomic units

Part 2:
Short Stickelberger's ©Vass relations

Part 3:
Chor-Rivest dense LSﬂphere— gzacking
with efficient decoding

For a Survey on 1 and 2, see [D. '17],
http://www.nieuwarchief.nl/serie5/pdf/naw5-2017-18-3-184.pdf
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Part 1:
The o%garithmic Lttice of cyclotomic units

L. Ducas (CWI) Logarithmic Lattices April 2018 8 /29



Ideals and Principal Ideals

Cyclotomic number field: K(= Q(wpm)), ring of integer R = Ok (= Z[wm)).

Definition (Ideals)

» An integral ideal is a subset ) C Ok closed under addition, and by
multiplication by elements of Ok,

> A (fractional) ideal is a subset f C K of the form f = 1f, where
x € Z,

» A principal ideal is an ideal § of the form § = g0 for some g € K.

In particular, ideals are lattices.

We denote .% the set of fractional ideals,
and Pk the set of principal ideals.
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The Problem

Short generator recovery

Given h € R, find a small generator g of the ideal (h).

Note that g € (h) is a generator iff g = u - h for some unit v € R*.
We need to explore the (multiplicative) unit group R*.
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The Problem

Short generator recovery

Given h € R, find a small generator g of the ideal (h).

Note that g € (h) is a generator iff g = u - h for some unit v € R*.
We need to explore the (multiplicative) unit group R*.

Translation an to additive problem

Take logarithms:

Log : g — (log|oi(g)l,---,log|on(g)]) € R”

where the o;’s are the canonical embeddings K — C.
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The Unit Group and the log-unit lattice

Let R* denotes the multiplicative group of units of R. Let

A = Log R*.

Theorem (Dirichlet unit Theorem)

N C R" is a lattice (of a given rank).
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The Unit Group and the log-unit lattice

Let R* denotes the multiplicative group of units of R. Let

A = Log R*.

Theorem (Dirichlet unit Theorem)

N C R" is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if
Log g € Log h + A.

Moreover the map Log preserves some geometric information:
g is the “smallest” generator iff Log g is the “smallest” in Log h + A.
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Example: Embedding Z[v/2] — R?

» x-axis: o1(a+ bv/2) = a+ by2
> y-axis: oa(a+ bv2) = a— b2
» component-wise additions and

“ . multiplications
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Example: Embedding Z[v/2] — R?

il
/ \ ) » x-axis: o1(a+ bv/2) = a+ by2
> y-axis: oa(a+ bv2) = a— b2
2 : » component-wise additions and
- multiplications
1 V2
B “Orthogonal” elements
/ , " M Units (algebraic norm 1)
/4 / B “Isonorms” curves
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Example: Logarithmic Embedding Log Z[v/2]

({e}, +) is a sub-monoid of R?
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Example: Logarithmic Embedding Log Z[v/2]

A =({e},+) N \_is a lattice of R?, orthogonal to (1,1)
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Example: Logarithmic Embedding Log Z[v/2]

{e} N " are shifted finite copies of A
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Reduction modulo A = Log Z[\/_

The reduction modA for various fundamental domains.
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A two-step approach was suggested in [Bernstein ‘14, Cambell Groves
Shepherd '14]:
» Use fancy quantum algorithm to recover any generator h
[Eisentrdger Hallgren Kitaev Song '14, Biasse Song '16]

» Reduce modulo units to obtain a short generator
[Cramer D. Peikert Regev '16]

For the analysis of the second step we need an explicit basis of the units of
Z|w]. It is (almost) given by the set

1— i
1_“: for i € (Z/mZ)*

uj =

L. Ducas (CWI) Logarithmic Lattices April 2018 10 / 29



Almost Orthogonal

Using techniques from Analytic Number Theory (bounds on Dirichlet
L-series), we can prove that the basis (Log u;); is almost orthogonal.
Implies efficient algorithms for

» Bounded Distance Decoding problem (BDD)
» Approximate Close Vector Problem (approx-CVP)

for interesting parameters.

Short Generator Recovery, BDD setting

If there exists an unusually short generator g (as in certain crypto settings),
we can recover it in classical poly-time from any generator h = ug.

Short Generator Recovery, worst-case

For any generator h, we can recover a generator g of length at most
exp(O(y/n)) larger than the shortest vector of (h).

L. Ducas (CWI) Logarithmic Lattices April 2018 11 /29



Comparison with General lattices

General Lattices Principal ldeal lattices
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Comparison with General lattices

General Lattices Principal ldeal lattices
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Can we remove the Principality condition ?
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Part 2:
Short Stickelberger's W ass relations
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The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:
ab = {Za;bi, aj €a, b e b}.
finite
The product of two principal ideals remains principal:

(aﬁ’K)(bﬁK) = (ab)ﬁK.
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The obstacle: the Class Group

Ideals can be multiplied, and remain ideals:
ab = {Za;bi, aj€a, b e b}.
finite
The product of two principal ideals remains principal:
(aﬁ’K)(bﬁK) = (ab)ﬁK.

F K form an abelian group!, Z is a subgroup of it.

Definition (Class Group)

Their quotient forms the class group Clx = %/ Pk.
The class of an ideal a € Fk is denoted [a] € Clg.

An ideal a is principal iff [a] = [Ok].

1 B
with neutral element Ok
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The problem: Reducing to the principal case

Definition (The Close Principal Multiple problem)
> Given an ideal a, and an factor F
» Find a small integral ideal b such that [ab] = [0k] and Nb < F

Note: Smallness with respect to the Algebraic Norm N of b,
(essentially the volume of b as a lattice).

Choose a factor basis B = {p1...pn} and restrict the search to b of the
form b =[] p/. lLe. solve the short discrete-logarithm problem

Ve Log%([a]_l).
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How to solve it ?

Again, two steps:

» Find an arbitrary solution v € Logg([a]™1)
[Eisentrager Kitaev Hallgren Song '14, Biasse Song '16]

» Reduce it modulo . ?
But do we even know . = Logy([OK]) ?
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Yes, we know .Z ! (Well Almost)

For a well chosen factor basis, e.g. = {o(p),0 € G := Gal(K/Q)}, Zis
almost given by Stickelberger:

Definition (The Stickelberger ideal)
The Stickelberger element 0 € Q[G] is defined as

0:2(% mod 1)0;1 where G 3 0, : w — w?.

The Stickelberger ideal is defined as S = Z[G] N 0Z[G].

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates Cl: Ve € S,a C K: [a®] = [Ok].
In particular, if B = {p?,0 € G}, then S C L.
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Yes, we know .Z ! (Well Almost)

For a well chosen factor basis, e.g. = {o(p),0 € G := Gal(K/Q)}, Zis
almost given by Stickelberger:

Definition (The Stickelberger ideal)

The Stickelberger element 0 € Q[G] is defined as

0:2(% mod 1)0;1 where G 3 0, : w — w?.

The Stickelberger ideal is defined as S = Z[G] N 0Z[G].

Theorem (Stickelberger's theorem)

The Stickelberger ideal annihilates Cl: Ve € S,a C K: [a®] = [Ok].
In particular, if B = {p?,0 € G}, then S C L.

Turn-out: the natural basis of S is almost orthogonal... Again !
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Approx-ldeal-SVP in poly-time for large «

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class

Relation

= Approx-ldeal-SVP solvable in Quantum poly-time, for

X = Llwm], a= exp(é(\/ﬁ))
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Approx-ldeal-SVP in poly-time for large «

[Cramer D. Wesolowsky '17] CPM via Stickelberger Short Class

Relation

= Approx-ldeal-SVP solvable in Quantum poly-time, for

% = Llwm], a=exp(O(vn)).
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Takeaway: Dual viewpoint (Caley-Graphs and Lattices)

M:V€Z2l—>v1+2v2mod5,/\:keru,
then Z/5Z ~ 72\

Cayley-Graph(Z/5Z,{1,2}) yASCYO

Distance {1-distance mod A
Diameter Covering radius
Shortest loop Minimal vector
Mixing time Smoothing parameter
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Part 3:
Chor-Rivest dense <5ﬂphere— @acking
with efficient decoding
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Dense Lattice with Efficient Decoding

Construct a lattice .Z together with an efficient decoding algorithm for .Z

Bounded Distance Decoding with radius r

» Given t =v + e where v € Z and |le|]| < r

» Recover v and/or e

The problem can only be solved up to half the minimal distance:
r<i(Z)/2

(otherwise solution are not uniques). We would like to find a lattice for
which the above can be done efficiently up to r close to Minkowsky's bound:

A (2) < 0(n) - det() /"
AI(2) < O(V/n) - det(.2) V",
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Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not
devastated. Idea:

» Subset-sums is hard
» Subset-product is easy (factoring numbers knowing potential factors)

» Take logarithm to disguise the later as the former, get crypto.
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Chor-Rivest Cryptosystem and Friends

[Chor Rivest '89]: First knapsack-based cryptosystem that was not
devastated. Idea:

» Subset-sums is hard
» Subset-product is easy (factoring numbers knowing potential factors)

» Take logarithm to disguise the later as the former, get crypto.

Variants of the cryptosystem by [Lenstra 90, Li Ling Xing Yeo '17].

Originally over finite-field polynomials F,[X], but variants also exists over
the integers: [Naccache Stern '97, Okamoto Tanaka Uchiyama ’00].

[Brier Coron Geraud Maimut Naccache '15]: Remove crypto from
[NS’97], get a good decodable binary code.

[D. Pierrot '18]: Remove crypto from [OTU ’00], get a good decodable
lattice.
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Chor-Rivest Lattice

Choose a factor basis of small primes, coprimes to @ = 3*:
B ={2,5,7,11,13,...,pp} CZ, []: x — x mod Q.
L ={vel st Hpv" =1mod Q}

i

dim.Z = n, det Z < ¢(Q) < Q. Note that p, ~ nlog n.
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Decoding Chor-Rivest Lattice (positive errors)

If p;, < Q then one can decode integral positive errors up to ¢; radius r in
the lattice .. That is:

> givent =v+e forve ZandecZl |lef1 <r
» we can efficiently recover v and e.

Compute

f:Hp,.t" mod Q:Hp;/pr,-e‘ mod Q:pr" mod Q@

The last product is in fact known over Z, not just mod @, since [ p;" < Q.
Factorize f (efficient trial division by 2,5, ..., p,), recover e, then v.
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Decoding Chor-Rivest Lattice

Now assume 2 - p < /Q.

Fo ﬁ pi- H pi =u/v mod Q.

i st >0 i st <0

— n & . —€
To recover u =[], o<op; and v=][; . .op; = notonly modulo Q
but in Z, we use the following lemma.

Lemma (Rational reconstruction mod Q)

If u,v are positive coprime integers and invertible modulo m such that
u,v < /mj/2, and if f = u/v mod m, then +(u, v) are the shortests
vector of the 2-dimensional lattice

L={(x,y) € Z?|x — fy = 0 mod Q}.

In particular, given f and m, one can recover (u, v) in polynomial time.
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Asymptotic parameters

Choose k = n. This gives
rY) = ©(n/log n) = ©(n/ log n) det(.L) /.
Compare to Minkowsky's bound in ¢ norm:

AD(2) < 0(n) - det(z) /"
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Asymptotic parameters

Choose k = n. This gives
rY) = ©(n/log n) = ©(n/ log n) det(.L) /.
Compare to Minkowsky's bound in ¢ norm:

AD(2) < 0(n) - det(z) /"

By norm inequality this directly imply decoding in ¢2-norm for a radius

r® = ©(y/n/log n) = ©(v/n/ log n) det(L)~Y/".

Compare to Minkowsky's bound in ¢ norm:

AI(2) < O(V/n) - det(.2) V",
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A paradoxical result ?

To the best of our knowledge, the best lattice with efficient BDD was

Barnes-Wall, with BDD up to a radius O(+/n) away from Minkowsky's
bound [Micciancio Nicolesi '08] (¢2 norm).

We are only O(log n) away from Minkowsky's bound, but this result is
strange:

» We can construct .Z efficiently.
» We can solve BDD efficiently in &

» We don't know how to find short vectors in .Z...
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The last mile ?

We are still O(log n) away from Minkowsky's bound...
The issue is that we do not have enough small primes.
To get down to O(1) away from Minkowsky's bound, we need

n primes of 'size’ O(1).

» Switching back from Z to F,[X] does not solve improve this loss
» Elliptic curves could ?

» Connection with Mordel-Weil lattices ? [Shioda '91, Elkies '94]
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Thanks for your interest.
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Thanks for your interest.
Duestions ?

O'ther C,%garithmic Pattices of interest ?
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